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Abshact. The expression for the mabix element of position for an interband vansition in a wide 
deep quantum well is derived using the envelope function expansion. It is found that the matrix 
element is not determined by the intra-atomic-like matrix element evaluated using band-edge 
Bloch functions, the result one might be led to expect either on intuitive grounds or as the 
result of a supposedly approximate evaluation in which only the dominant term in the envelope 
function expansion of each wave function is used. To obtain the correct expression. terms in the 
envelope function expansion t h a  become vanishingly small in the limit of wide wells must be 
retained. Usually the interband matrix element is comparable with that for allowed intersubband 
transitions. Some implications for the EC Stark effect for quantum wells and non-linear refraction 
in quantum dot sbuctures are mentioned. 

1. Introduction 

Recently, there has been increasing interest in optical intersubband processes in quantum 
wells [1,2] such as occur in infrared detection [3], second harmonic generation [4,5] and 
non-linear refraction and absorption [6-81. The interest in these processes is due, in part, 
to the large dipole matrix elements [ I ]  for these transitions. In analysing the effect of 
interband transitions compared with intersubband transitions on non-linear refraction and 
absorption [6,7], it is necessary to know the corresponding dipole matrix element for 
interband transitions. It is easy to suppose that the dipole matrix elements for the interband 
transitions, which superficially appear to be intra-atomic in character, to be of a similar 
size to atomic dipole matrix elements and, in general, much smaller than the dipole matrix 
elements for allowed intersubband transitions in quantum wells. The purpose of this paper 
is to investigate this assumption by evaluating the dipole matrix element for an interband 
transition in a deep wide quantum well. Contrary to the above supposition, we find that the 
dipole matrix element for an interband transition can be much larger than that for allowed 
intersubband transitions. 

In the next section the two-band electronic structure approximation [9] used in the 
calculation of matrix elements for interband transitions is described with particular reference 
to the envelope function expansion [ 10-121 of the wave function in the quantum well. In 
section 3 the dipole and momentum matrix elements for the transition between band-edge 
states is evaluated and shown to be in accord with the textbook theorem [I31 relating 
such matrix elements. The two-band approximation of the envelope function expansion of 
each wavefunction has been used merely for clarity in sections 2 and 3. It is shown in 
appendix A that, in the limit of a wide well, the inclusion of the other bands does not alter 
the results. Also, to avoid inessential detail, the mathematical arguments are presented for 
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the one-dimensional case throughout. Section 4 summarizes the results with an illustrative 
numerical example, and discusses some of the implications. 

2. The model 

In the two-band approximation [91 to the envelope function expansion [10-12], the wave 
function, Y, is given by 

Y(x) = Fc(x)Uc(x)  + Fv(x)Uv(x) (1) 

where U, and U, are the zone-centre eigenfunctions for the conduction band minimum, of 
energy Ec, and valence band maximum, of energy E", and F, and F, are the envelope 
functions. The zone-centre eigenfunctions Uc and U, are periodic in the lattice constant, a, 
and we chose to normalize them so that the squared modulus has mean value unity over a 
unit cell, i.e. 

the integrals being independent of no. For low-lying conduction band states, @, the 
conduction band envelope function, F,'C), is dominant and obeys the effective-mass equation 
[10-12]. For a wide deep well of width L,  F,(E) for the ground conduction band state is 
given inside the well (1x1 4 L/2) by 

and is zero outside. The valence band envelope function F,(C) for this ground conduction 
band state is given approximately by 

(Ec  -Ev)F,'c) FZ -(ih/m)pvcdF,(C)/dx (4) 

where pvc is the interband momentum matrix element 

which is also independent of xo. Hence 

F:) N ( i h p , , / m E s ) ( x / L ) m s i n ( n x / L )  (6) 

with E, = Et - E". Similarly for the highest valence band state, Yr("), 

FYI = m c o s ( i r x / L )  (7) 

F,(" N - ( i h p , , / m E s ) ( n / L ) ~ s i n ( x x / L ) .  (8) 

It is by no means essential for the discussion in the next section to be restricted to the 
two-band expansion given here. As is shown in appendix A, the remaining bands do not 
contribute to the matrix elements in the limit of a wide well. 
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3. Evaluation of interband matrix elements 

3.1. Dipole mnix eiemeni 

To evaluate the dipole matrix element between the band-edge quantum well states 
q("), we use the envelope function expansion given in the previous section: 

and 

tm +m 
(F,("U, + Fy"x(F, 'y )U,  + F,("U,)dX. L (Y(C)Ixlq("))  = s_, q ( C ) * x q ( " ) d X  = 

(9) 

It is tempting to argue as follows. The dominant term in q(') is @)Uc and that in Y(") is 
(indeed, the neglected terms become vanishingly small in comparison in the limit 

of wide wells), so as an approximation 

+m 
(@IxlW(")) GZ 1, (F,(oU,)*X(F,(V)U")dx = IC". (10) 

To evaluate the integral in the limit of slowly varying F s  one uses the standard argument 
that the rapidly varying part of the integrand, U:xUv, can be replaced by its mean value, 
U:xU,,. over a unit cell, say that between xg and xg + a. The orthogonality of the Us 
ensures that this mean value is the same for all unit cells regardless of their positions, so 

- 

Since F,(c) and F t )  are one and the same normalized function, a c o s ( i r x / L )  inside the 
well and zero outside, the integral is just unity. Therefore 

Since Uc and Uv are orthogonal, the integral is independent of the point about which the 
dipole moment is taken; we could replace x by x - X I .  Choosing x ,  somewhere between 
xg and xo + a we easily see that integral is of the order of a. This is what we would expect 
because of the intra-atomic nature of the transition across the gap. However, there is a 
disturbing aspect to this result: it depends on the choice of xg. A simple example will show 
this. Take two-band model approximations to Uc and U", e.g. 

= &sin(nx/a) U, = &cos(nx/a). (13) 

Then the integral turns out to be -(&a) cosQnxo/a); it oscillates with mean value zero. 
As is shown in appendix B, this is not a quirk of the two-band approximation, but a general 
feature. The fact that our answer depends on the choice of xg ,  i.e. the way we decide how 
to divide the range of integration into unit cells of length a, suggests that our factorization 
of the integrand into slowly varying and rapidly varying parts has been misguided. A better 
factorization is F,'"*xF,") - as the slowly varying part and U:U, as the rapidly varying 
part. The mean value, cl,'.!/,, of the rapidly varying part is now zero, independently of the 
choice of x g .  This gives zero for the whole integral in the limit of slowly varying envelope 
functions regardless of how the infinite range of integration is divided into unit cells; this 
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result does not depend on the specific form of FF) and F,'" chosen above. (The reader 
may object that one cannot put x with F,'c)* and F,c" because it is not slowly varying; its 
derivative is always unity. However, its logarithmic derivative, l / x ,  is the more appropriate 
quantity to consider and this is small except in a small fraction of the integration range near 
x = 0.) A proof that the integral on the RHS of (10) is indeed zero, as one might expect 
from the oscillatory nature of the RHS of (12). for bound states with slowly varying envelope 
functions is given in appendix C. 

Now that we have found that retaining only the dominant parts, @U, and FF)Uy,  
of W@) and W(") leads to zero contribution to (W(c)~x[W(v)), we are forced to consider the 
effects of the second term in the envelope expansion even though it becomes vanishingly 
small compared with the first term in the limit of wide wells. Consider 

i.e. the integral having two conduction band envelope functions in the integrand. Using the 
fact that IUClz is rapidly varying and has mean value unity over a unit cell, the integral is 
approximately 

J-W 

In a similar way, for the integral involving two valence band envelope functions, 

Using the explicit forms of the Fs given in section 2 one sees that Io and I,, are equal 
and together contribute 

rCc -k Lv = pcvlimog (17) 

to the dipole matrix element wherehw, = E,. The final integral ~ ~ w ( F ~ ) U , ) * x ( F , ( V U c )  dx  
can easily be seen to vanish in the limit of a wide well, because U:U, = 0. Taking all 
these results together we have, in the limit of a wide deep well, 

m- 

(W(C)IxlW(")) = pc"/imog. (18) 

As is discussed in appendix A, these results hold even when the complete envelope expansion 
is used. 

3.2. Momentum matrix element 

The evaluation of the momentum matrix element, (Y(c)lplY(v)), proceeds in a similar 
manner to that for the dipole matrix element. However, the evaluation is much simpler 
for the momentum matrix element case, even though the action of the derivative on the 
FU-type products doubles the number of terms, because only one term contributes i n  the 
limit of a wide well. The terms involving the derivative of an envelope function can be 
dropped immediately because they contribute, at most, terms of order 1/L to the matrix 
element. (Indeed, the contributions of order I j L  vanish by symmehy and orthogonality 
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arguments, but we do not need this stronger result.) So only terms involving derivatives 
of the periodic functions U, and U, survive. Since U, and U, are Bloch functions for 
stationary points in the band structure, U:pU, and U,?pUv both vanish. We are left then 
with integrals involving U,*pU, and U:pU,. The latter integral vanishes in the limit of a 
large well because the envelope function factor F$)'FF) - l /L3  which gives an integral - I / L z  so we are left with 

~ P ( C ) I ~ I W )  = 1, F ~ * F , ( Y ) U , * ~ U , ~  = U *  =/_ U FF)*F,?dx = pcv.  

- - 

+m +m 
(19) 

This is the interband bulk matrix element, as expected. Taking (18) and (19) together we 
have 

( @ c ) ~ p ~ ~ ( " ) )  = imwg(@)lxl@')) (20) 

in accordance with the standard textbook result [13] relating matrix elements of position 
and momentum for bound states. 

4. Summary and discussion 

The dipole and momentum matrix elements have been evaluated for the interband transition 
between the band-edge states of a wide deep quantum well using the envelope function 
expansion for the wave functions. The textbook relation between these matrix elements is 
regained after taking into account apparently insignificant terms in the envelope function 
expansion. The relation ensures that the interband optical absorption rates obtained for a 
quantum well using the E . r and A . p forms of the interaction are the same. The dipole 
matrix element is independent of the intra-atomic-like matrix element of the dipole operator 
with respect to the band-edge states, with the integral taken over a unit cell, which we have 
shown to be an ill-defined quantity in any case. Neither is the dipole matrix element related 
to well width as in the case of allowed intersubband transitions. Rather, the dipole matrix 
element is determined by the matrix element of momentum between the band-edge states 
and the band gap. It can easily exceed the dipole matrix element for allowed intersubband 
transitions. For instance, the dipole matrix element between the ground and first excited 
state of a deep quantum well is about 0.18 of the well width, 18 A for a 100 8, wide well. 
Taking the energy Ep related to the interband momentum matrix element as 20 eV, a typical 
value for a 111-V semiconductor [14], and a band gap of 0.2 eV, the interband dipole matrix 
element is 44 A. 

The size of the interband dipole matrix element raises an interesting question concerning 
the DC Stark effect in quantum wells. The narrowing of the gap is usually understood using 
a particle in a box model. The ground state and the first excited states repel each other in 
an electric field because of the dipole matrix element; the ground state falls. This happens 
for both electrons and holes and the band gap shrinks. However, the presence of a large 
interband dipole moment suggests that the band gap will increase in the presence of an 
electric field. This would tend to decrease if not reverse the shrinking of the band gap that 
would occur in its absence. However, we should note that the model used here is only really 
applicable to the conduction band and light-hole band in a zincblende semiconductor (light- 
hole-like, that is, in the direction perpendicular to the interfaces). We would only expect to 
see such competition between the intersubband and interband effects for conduction-band- 
light-hole-band Stark shifts in low-band-gap semiconductors. For the conduction and heavy- 
hole bands (heavy-hole-like, that is, in the direction perpendicular to the interfaces), the 
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strong coupling via the k . p  interaction will not be present for zero wave vector component 
parallel to the interfaces, and a large dipole matrix element and the consequent competition 
between the intersubband and interband effects on the Stark shift are not expected. In 
quantum dots light- and heavy-hole band states become coupled [E]. One would therefore 
expect a substantial interband dipole matrix element from the component bulk volume states 
that are light-hole-like in the direction of the light polarization. For non-linear refraction in 
quantum dots this suggests that both intraband and interband processes have to be considered, 
and that it does not necessarily follow that the two-photon absorption contribution (which 
involves both interband and intraband transitions) will necessarily dominate over the optical 
Stark effect (which involves only interband transitions) contribution in the mid-gap region 
as is the case in bulk samples [16]. Indeed both experimental and theoretical evidence for 
this view has been found [17]. 

To summarize the main point of this paper, the author can do no better than paraphrase 
remarks made by Ridley [18]. In matrix elements, the momentum operator will always 
emphasize the spatial rate of change of the wave functions while the position operator will 
emphasize their spatial extent. So, if the wave functions are each approximated by just one 
term of the type FU with slowly varying F independent of the rapidly varying periodic 
U, then a paradox arises: the matrix elements of position are determined by the Fs while 
those of momentum by the Us and would appear independent of each other, yet the matrix 
elements are related by a standard textbook theorem. It is clear, then, that a more accurate 
expression for the wave function must be used, as in this paper,' to get the correct result. 
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Appendix A. Contribution of the remaining bands to (S'(c)lxp€'(v)) 

The full envelope function expansion of the wave function Q@) (s = c or v) is 

Y(S) = F:S'U,+F,(J)U,+-p , '6)Ur .  (AI) 

In the slowly varying envelope function approximation 

F!") % W P ~ , / [ ~ ( E ,  - ~ , ) ~ ( a / ~ ) m s i n ( n x / ~ ) .  (A2) 
The matrix element (Y(c)IxIY(v)) is a sum of terms of the type 

As explained in section 3, one only gets a non-zero contribution to (A3) in the limit of wide 
wells when n = n'. In that case 

when n # c or v. So all contributions In, + 0 as L + CO, except I, and Ivy .  In a similar 
vein one can show that the effect of the remaining bands on (Q(')lp[Q(")) is also negligible 
in the limit of wide wells. 
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Appendix B. Evaluation of 

Using the plane-wave expansion 

of the periodic function Un(x)  (period a) one has 

4097 

For G = G' the integral is independent of G (or G') and the contribution from such terms 
vanishes because of the orthogonality of U, and U": 

Restricting the sum to terms for which G # G', one obtains 

This clearly oscillates about a mean value of zero, as xo is varied. 

Appendix C. Proof that J:',"& (F,(dUc)*xF$)Uv = 0 for slowly varying envelope 
functions 

Suppose that the quantum well of wridth L is part of a superlattice of period A(>> L) which 
will eventually be allowed to tend to infinity to get results for the isolated quantum well. 
The envelope functions, F ,  will be expanded in plane waves 

where the wave numbers k obey kA = 2nr with n an integer. The origin has been taken 
at the centre of the well. Using the plane-wave expansion for the cell periodic functions 
Un(x) ,  i.e. 

one has 
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Using similar arguments to those used in appendix B, one sees that the C = G' terms give 
no overall contribution and one obtains 

At this stage one remembers that only wide wells and slowly varying envelope functions 
are being considered. It is then permissible to make a binomial expansion of (k - k' + 
G - G')-' and retain only the first term since all other terms will be smaller by the factor 
( k  - k')/(G - G') or its powers. Asymptotically one then obtains 

where 

For bound states O(c) and Q("), the envelope functions will be exponentially small at the 
centre of the barriers. One expects them to vary as e-q*/' where Q is positive. As A 
tends to infinity, the exponential terms overwhelm the linear A factor and /cv tends to zero. 
One may repeat the above procedure with the other terms in the binomial expansion. The 
nth-order term leads to a term similar to (C5) but with Fp)(x)'F,'v)(x) replaced by its nth 
derivative, which will also be exponentially small at x = zkA/2, and with d,, replaced 
by a ;?"-pole moment (G - G' replaced by (G - G')" in (C6)). So the conclusion that 
I, -+ 0 still holds provided the envelope functions are sufficiently slowly varying to keep 
the expansion convergent. 
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